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hydridocarbyne 3b and the "dimers" 5a and 5b are underway. Scheme 1° 
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Despite the successful synthesis of several monocyclic thiepine 
derivatives stabilized by bulky groups at both the 2- and 7-pos-
itions,1 the parent thiepine (1) has eluded synthesis.2 This is 
mainly due to the pronounced thermal instability of 1. Ready 
loss of sulfur from 1 presumably occurs by valence isomerization 
of 1 to the corresponding thianorcaradiene followed by irreversible 
cheletropic loss of sulfur.3 On the other hand, the ability of 
transition metals to stabilize labile species by complexation4 has 
allowed isolation of kinetically unstable conjugated molecules such 
as cyclobutadiene,5 pentalene,6 and norcaradiene.7 Actually, in 
the field of thiepines, a transition-metal complexation strategy 
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"Synthesis of 2. Reagents and conditions: (i) 1.5 equiv of Fe2(C-
O)9, THF, 50 0C, 12 h, 99%; (ii) 1.5 equiv of P-CH3C6H4N2

+ BF4", 95 
0 C, 5 min under sonication, 21%; (iii) 4.0 equiv of LAH, 1:2:1 DME-
THF-ether, -100 8C, 1 h, 24%; (iv) 4.0 equiv of Fe2(CO)9, benzene, 
75 0C, 48 h, 67%; (v) 2.0 equiv of P-CH3C6H4N2

+ BF4", 95 0C, 10 min 
under sonication, 10%; (vi) 15.0 equiv of SmI2, THF, 0 0 C, 38%. 

has recently been utilized to synthesize and isolate thermally 
unstable 1-benzothiepine 1-oxide by us.8 Herein we disclose the 
first synthesis and characterization of (thiepine)iron tricarbonyl 
(2), which demonstrates the possibility of detection of thiepine 
1. 
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Our synthetic route to (thiepine)iron tricarbonyl (2) involves 
unique methodology for the reduction of sulfone to sulfide. The 
reaction of stable thiepine 1,1-dioxide (3)9 with 1.5 equiv of 
Fe2(CO)9 in THF at 50 0C for 12 h furnished the iron tricarbonyl 
complex 4,10 yellow needles, mp 169-170 0C dec, in 99% yield. 
The 7j4-complexation in 4 was confirmed on the basis of its 1H 
and 13C NMR spectra which exhibited substantially high field 
chemical shifts for 2- (6H = 3.73, 5C = 67.4) and 5-positions (5H 
= 3.13, ac = 50.8). 

Recently, the conversion of sulfones into sulfoxides has been 
reported by a two-stage procedure involving initial reaction of a 
sulfone with an arenediazonium tetrafluoroborate to form an 
aryloxysulfoxonium salt" and subsequent reaction of this either 
with NaBH4-Al2O3

12 or with phenylmethanethiol.13 Reaction 
of finely pulverized 4 with p-toluenediazonium tetrafluoroborate 
without solvent at 95 0C for 5 min under sonication afforded a 
1:1 mixture of stereoisomers of the p-tolyloxysulfoxonium salts 
5a10 and 5b10 which could, though tedious, be separated14 by 
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column chromatography on silica gel with a mixture of chloroform 
and acetonitrile (3:1). Attempts to reduce 5 with a hydride reagent 
proved unsatisfactory. Thus, LiAlH4 reduction of the mixture 
of 5a and 5b at -100 0C for 30 min yielded, instead of the expected 
thiepine 1-oxide complex (6), the 6,7-dihydrothiepine 1-oxide 
complex (7).10 The structure of 7 followed from its NMR spectra 
together with its independent synthesis starting from 2,7-di-
hydrothiepine 1,1-dioxide (8)9 as shown in Scheme I. The for­
mation of 7 can reasonably be rationalized on the basis that a 
positive charge in 5a and 5b mainly resides in the 6-position as 
exemplified by the low-field 1H and 13C NMR chemical shifts 
of this position (5H = 7.73 and 7.58, 5C = 161.0 and 160.4, 
respectively). A likely mechanism, therefore, involves initial 
hydride attack at the 6-position of 5 with elimination of the 
/Molyloxy group followed by a second hydride attack at the 7-
position. 

At this stage, we focused our attention on a lanthanide reagent 
for the reduction. The main oxidation state of lanthanides is +3, 
hence divalent lanthanides are one-electron donors. Furthermore, 
another characteristic feature of lanthanides is their strong oxo-
philicity which can be helpful for the activation of oxygenated 
organic functions.15 In view of these characteristics of lanthanides, 
samarium diiodide16 may be a versatile reagent to reduce an 
aryloxysulfoxonium salt to sulfide. 

On reaction with the SmI2-THF complex, either in the presence 
or in the absence of HMPA,17 5 was reduced quite easily, without 
saturation of the 6,7-double bond, to the desired (thiepine)iron 
tricarbonyl (2),10 which could be isolated and purified by chro­
matography on silica gel as stable yellow needles (38% yield, mp 
54.5-55 0C after recrystallization from hexane). The structural 
assignment is fully supported by the spectral properties of this 
complex. The mass spectrum shows the parent ion peak at m/z 
250 (exact mass, calcd for C9HjO3SFe 249.9387, found 249.9374). 
The infrared carbonyl absorptions (Nujol) occur at 2055, 1998, 
and 1981 cm"1. The 1H NMR (400 MHz, CDCl3)

18 spectrum 
exhibits six ring protons at S 3.92 (H-5, J56 = 8.6, J54 = 8.2, J51 
= J53= 1.0 Hz), 4.09 (H-2, J23 = 7.3, J11 = 2.6, J24 = 1.6 Hz), 
4.77'(H-4, J45 = 8.2, J43 = 4.6, J42 = l'.6 Hz), 4.94 (H-3, 732 
= 7.3, J34 = 4.6, 735 = 1.0 Hz), 5i94(H-7, Z76= 10.2, J12 = 
2.6, Z75 = 1.0 Hz), and 6.04 (H-6, J61 = \0.2',J65 = 8.6 Hz). 
The 13C NMR (100 MHz, CDCl3)

18' spectrum indicates ring 
carbons at 6 57.9 (C-2), 62.7 (C-5), 83.9 (C-3), 93.3 (C-4), 120.5 
(C-6), and 121.1 (C-7), along with the carbonyl carbon at 210.9 
ppm. The complex 2 absorbs in the ultraviolet in cyclohexane: 
\na* (log <) 262 (4.04) and 335 nm (sh 3.54) with tailing up to 
470 nm. An X-ray structural analysis, which to date has been 
unsuccessful due to its sensitivity upon X-ray irradiation, is to be 
carried out on the complex 2 in order to obtain detailed structural 
information. 

These results demonstrate that thiepine is highly stabilized as 
a ligand in the complex 2. Attempts to free the thiepine ligand 
from the iron tricarbonyl complex by low-temperature oxidation 
and/or irradiation are now underway. Furthermore, the general 
utilization of SmI2 in reduction of sulfones to sulfides will be the 
topic of future reports from these laboratories. 
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Recently, a number of metal complexes1'2 and surfaces3 have 
been shown to mediate the ring-opening of cyclic thioethers. These 
studies have provided insight into the hydrodesulfurization of fossil 
fuels and revealed new patterns of reactivity such as the ring-
opening, oligomerization of 3,3-dimethylthietane.2 In the course 
of our studies of the reactivity of Pd2(M-Cl)2Cl2(PMe3)2 (1) with 
sulfur ligands,4"6 we have examined the reactivity of the di-
palladium complex with thietane and have found a novel ring-
opening, migratory insertion reaction to occur. 

Reaction of 1 (0.200 g, 390 ixmo\) with 60 nL (830 ^mol) of 
thiethane in 30 mL of refluxing ethanol gives rise to cis-
Pd2Cl2(M-SCH2CH2CH2Cl)(/u-Cl)(PMe3)2 (3), as seen in Scheme 
I. After 48 h of reaction time, purified 37 is isolated in 56% yield 
by allowing the filtered reaction mixture to stand at -10 0C and 
recrystallizing the resulting precipitate from chloroform. The 
molecular structure of 3 was determined through a single-crystal 
X-ray diffraction study.8 An ORTEP diagram of the obtained 
structure is seen in Figure 1. The heavy atom framework is 
similar to that which has been previously6,9 found for dipalladium 
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